

CSE-5368 Neural Networks Exercise Problems 02

Complete the following functions using only numpy:

def calculate_2d_mean_median_variance_columnwise(x):

- # given a two dimensional list of numbers.
- # Calculate mean, median and variance of each column
- # x: two dimensional list of numbers
- # return: two dimensional list of 3 rows by number of columns in x
- # The first row of the return list contains mean values,
- # 2nd row contains medians and third contains variances
- # Notes:
- # IMPORTANT:
- # Use only python. No other packages such as numpy, math, ...
- # Assume that all the rows of x have the same number of elements

def calculate_2d_ mean_median_variance_rowwise(x):

given a two dimensional list of numbers.

Calculate mean, median and variance of each row

- # x: two dimensional list of numbers
- # return: two dimensional list.
- # the number of rows in the return list should be the same as
- $\ensuremath{\texttt{\#}}$ number of rows in x and return list should have 3 columns
- # Notes:
- # Use only python. No other packages such as numpy, math, ...
- # Assume that the number of elements in each row are NOT THE SAME

def column_wise_normalization(x):

- # Write a function to normalize a numpy array, x, column-wise,
- # by performing # the following calculation for each element:
- # (element value mean of its column) / standard deviation of its column.

def mean_absolute_error(actual,desired):

This function calculates the mean absolute error

between two numpy arrays.

def confusion_matrix(actual, desired):

This function computes the confusion matrix for a multi-class # classification problem using actual and desired values. # actual is a numpy array [input_dimensions,nof_samples] # desired is the same shape as actual

def covariance_matrix(X):

- # This function calculates the covariance matrix
- # for a given numpy array.
- # Covariance Matrix = ((X-X_mean)^T* (X-X_mean))